Jan Macdonald
Jan Macdonald
Home
Publications
Talks & Posters
Teaching
Contact
Recent & Upcoming Talks
2022
Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning
Long Oral & Poster:
Presentation of results from our
paper
.
Jul 21, 2022 4:00 PM — 4:20 PM
Baltimore Convention Center, Baltimore, USA
Martin Genzel
,
Ingo Gühring
,
Jan Macdonald
,
Maximilian März
Code
Video
Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings
Spotlight & Poster:
Presentation of results from our
paper
.
Jul 20, 2022 10:30 AM — 10:35 AM
Baltimore Convention Center, Baltimore, USA
Jan Macdonald
,
Mathieu Besançon
,
Sebastian Pokutta
Code
Video
Solving Inverse Problems With Deep Neural Networks - Robustness Included?
Invited Talk:
Presentation of results from our
paper
.
May 26, 2022 9:50 AM — 7:30 PM
Paradise Bay Resort, Mellieha, Malta
Martin Genzel
,
Jan Macdonald
,
Maximilian März
Code
A Complete Characterisation of ReLU-Invariant Distributions
Contributed Talk & Poster:
Presentation of results from our
paper
.
Mar 30, 2022 10:45 AM — 2:00 PM
Virtual Conference
Jan Macdonald
,
Stephan Wäldchen
2021
Learning to Invert Defocus Blur: A Data-Driven Approach to the Helsinki Deblur Challenge
Invited Talk:
Presentation of our 1st place winning submission to the Helsinki Deblur Challenge.
Dec 15, 2021 9:50 AM — 10:50 AM
Tampere University (Hybrid Virtual Conference)
Theophil Trippe
,
Martin Genzel
,
Jan Macdonald
,
Maximilian März
Code
Near-Exact Recovery for Sparse-View CT via Data-Driven Methods
Poster:
Presentation of a detailed
analysis
of our 1st place winning AAPM DL-Sparse-View CT challenge
submission
.
Dec 13, 2021 12:45 PM — 2:00 PM
Virtual Conference
Martin Genzel
,
Ingo Gühring
,
Jan Macdonald
,
Maximilian März
Code
AAPM DL-Sparse-View CT Challenge Submission Report: Designing an Iterative Network for Fanbeam-CT with Unknown Geometry
Invited Talk:
Presentation of our 1st place winning AAPM DL-Sparse-View CT challenge
submission
.
Jul 28, 2021 4:30 PM — 5:30 PM
Virtual Conference
Martin Genzel
,
Jan Macdonald
,
Maximilian März
Code
Interval Neural Networks as Instability Detectors for Image Reconstructions
Contributed Talk:
Presentation of results from our
paper
.
Mar 9, 2021 1:45 PM — 2:00 PM
Virtual Workshop
Jan Macdonald
,
Luis Oala
,
Maximilian März
,
Wojciech Samek
Code
Video
2020
Explaining Neural Network Decisions Is Hard
Poster:
Presentation of results based on our papers
A Rate-Distortion Framework for Explaining Neural Network Decisions
and
The Computational Complexity of Understanding Network Decisions
.
Jul 17, 2020
Virtual Workshop
Jan Macdonald
,
Stephan Wäldchen
,
Sascha Hauch
,
Gitta Kutyniok
2019
A Rate-Distortion Framework for Explaining Neural Network Decisions
Poster:
Presentation of results from our
paper
.
Oct 24, 2019
Zuse Institut Berlin
Jan Macdonald
,
Stephan Wäldchen
,
Sascha Hauch
,
Gitta Kutyniok
A Rate-Distortion Framework for Explaining Neural Network Decisions
Poster:
Presentation of results from our
paper
.
Sep 9, 2019
Fraunhofer Heinrich-Hertz-Institut
Jan Macdonald
,
Stephan Wäldchen
,
Sascha Hauch
,
Gitta Kutyniok
A Rate-Distortion Framework for Explaining Deep Neural Network Decisions
Invited Talk:
Presentation of results from our
paper
.
Jul 17, 2019 5:30 PM — 6:00 PM
Universitat de València
Jan Macdonald
,
Stephan Wäldchen
,
Sascha Hauch
,
Gitta Kutyniok
A Rate-Distortion Framework for Explaining Neural Network Decisions
Poster:
Presentation of results from our
paper
.
Jul 3, 2019
École nationale supérieure d'électrotechnique, d'électronique, d'informatique, d'hydraulique et des télécommunications (ENSEEIHT)
Jan Macdonald
,
Stephan Wäldchen
,
Sascha Hauch
,
Gitta Kutyniok
A Rate-Distortion Framework for Explaining Deep Neural Network Decisions
Contributed Talk:
Presentation of results from our
paper
.
Apr 2, 2019 12:00 PM — 12:25 PM
TUM Science and Study Center Raitenhaslach
Jan Macdonald
,
Stephan Wäldchen
,
Sascha Hauch
,
Gitta Kutyniok
2018
Practical Session on Approximations with (Deep) Neural Networks
Practical Session:
Introduction to Tensorflow and hands-on tutorial on approximating smooth functions with neural networks
(joint with Raffael Raisenhofer)
.
Oct 16, 2018
Mathematisches Forschungsinstitut Oberwolfach
Jan Macdonald
,
Raffael Raisenhofer
Code
Slides
Image Classification Using Wavelet und Shearlet Based Scattering Transforms
Contributed Talk:
An analysis of the generalization error for multi-class multinomial logistic regression classifiers.
Feb 3, 2018 9:00 AM — 9:30 AM
Bergkloster Bestwig
Jan Macdonald
Cite
×