Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings

Spotlight & Poster


We study the effects of constrained optimization formulations and Frank-Wolfe algorithms for obtaining interpretable neural network predictions. Reformulating the Rate-Distortion Explanations (RDE) method for relevance attribution as a constrained optimization problem provides precise control over the sparsity of relevance maps. This enables a novel multi-rate as well as a relevance-ordering variant of RDE that both empirically outperform standard RDE and other baseline methods in a well-established comparison test. We showcase several deterministic and stochastic variants of the Frank-Wolfe algorithm and their effectiveness for RDE.

Jul 20, 2022 10:30 AM — 10:35 AM
Baltimore Convention Center, Baltimore, USA
Jan Macdonald
Jan Macdonald

My research is at the interface of applied and computational mathematics and scientific machine learning. I am interested in inverse problems, signal- and image recovery, and robust and interpretable deep learning.